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A Tutorial On Model Error Concepts In Control Design 
R. E. Skelton 
School of Aeronautics and Astronautics 
Purdue University 
West Lafayette, IN 47907 

Abstract 

Traditional modeling notions presume the existence of a "truth" model that relates 

the input to the output, without advanced knowledge of the input. This has led to the 

evolution of education and research approaches (including the available control and 

robustness theories) that treat the modeling and control design as separate problems. 

This paper explores the subtleties of this presumption that the modeling and control 

problems are separable. A detailed study of the nature of modeling errors is useful to gain 

insight into the limitations of traditional control and identification points of view. 

Modeling enors need not be "small" but simply "appropriate" for control design. 

Furthermore the modeling and control design processes are inevitably iterative in nature. 

Introduction 

It is difficult to h o w  a priori what type of modeling errors will be significant in 

the control design problem, and this issue is typically left to ad hoc approaches with the 

hope that "robust" control design techniques will somehow compensate for any error left 

in the model. However, significant performance improvements are often possible by 

obtaining more appropriate models at the outset, as opposed to placing all the burdens for 

the compensation of modeling errors on the control design. Even in identification 

approaches to modeling, the adequacy of the model for control design is unknown [l). It 

is useful to revisit the formal smcture of modeling errors to point out some common 

misunderstandings about their n a m .  

Perfect models are never required nor arc they possible to consmct. Some 

modeling errors are always acceptable. For example, in most aircraft or spacecraft 

control problems, these errors arc probably acceptable without reservation: (i) 
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microscopic effects (molecular motion in the wings), (ii) relativistic effects, (iii) the 

higher order effects of earth oblateness on the environmental disturbances. 

It is common practice in engineering to develop models of dynamic systems 

without regard to the impact that input forces have on the validity of the model. Unlike 

relativistic errors, this is a serious impact that needs further clarification. We shall see 

that the nature of the input forces dictate the validity of the model. If the input forces are 

to be controlled by a feedback controller, this means that the controller design dictates 

the validity of the mathematical model, rather than the other way around. (Control texts 

like to say that the fidelity of the controller is dictated by the fidelity of the model). An 

example clarifies the idea. A plate of steel might be characterized as a rigid body. A 

rigid body model is appropriate if the forces to be applied are relatively small. Large 

forces will deform the plate and can render a rigid body model useless for predicting the 

dynamic response. This argument continues indefinitely. The more accuracy required in 

the predictions of dynamic response, the more careful one has to be about including 

small effects in the dynamic model (non-homogeneous material properties of the steel, 

air turbulence, thermal gradients, etc.). This quickly leads to the conclusion that the 

validity of a model cannot be assessed by its open loop response. The modeling errors 

that are acceptable depend upon the control forces. 

Figure 1 illustrates the steps in the modeling process. The first step is to adopt an 

"idealization" of the system. Two examples will clarify the meaning of "idealization" 1) 

If the physical phenomenon is a mechanical structure, we might "idealize" the smc tu r~  

as a rigid body. Another idealization is a flexible plate. The actual s m c m  is neither a 

rigid body nor a flexible plate, but such a hypothesis (e.g. rigid body) forms our 

"idealization" of the structure and this occurs before any mathematical models arc yet 

formulated. 2) Another type of idealization occurs in identification experiments. When 

we try to fit a canonical model (e.g. phase variable form) to the input output data, we say 

that the canonical structure forms our "idealization" of the plant. (The wordplant is used 
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-Fig. 1 Steps in the Modeling Process 

to. include the characterizations of the disturbance environment as well). Hence, 

idealizations lead to errors in model structure and model order. 

The second step in the modeling process is to apply known physical laws to 

develop a mathematical model of the idealization. This step introduces parameter emors 

(values of mass, inertia, spring constants, etc.). This step might be omitted if the model 

is developed from experimental data. 

The third step is the simplification of the model. High order models may be 

reduced to low order models. This step leads to errors in model order and parameters. 

The fourth step is controller design based upon the model obtained in step III. The 

purpose of this paper is to discuss the types of errors that have small and large impacts on 

the controller design. 

The controller design procedures which an tractable are usually of high order. 

(Both LQG and H" controllers are of order generally equal to the model order). Hence, a 

Mth step in the modeling and control design process is controller reduction. (If an 
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optimization is performed to obtain the connoller of specified low order directly, the 

controller reduction and/or the model Eduction step is omitted). 

This paper is a tutorial on the concepts of model errors in model based control 

design. The paper poses some old questions, some new ones, and adds some conjectures. 

The intent is to clarify some common misunderstandings about the nature of modeling 

errors and their impact in feedback control. 

The paper is organired as follows. Section 2.0 cites simple examples which 

motivate the need for a more precise way to characterize "acceptable" modeling errors. 

Section 3.0 characterizes the structure of all modeling errors, and describes a modeling 

and control inseparability principle. Section 4.0 describes the closed loop impact of 

modeling errors and presents an unconmllability, unobservability principle. Section 5.0 

offers some condusions. 

2.0 Motivating Examples and Some ModeIing Principles 

This section il!ustrates four modeling principles by examples. 

MODELING PRINCIPLE I: arbitrarily s m l l  modeling errors can lead to arbitrariIy 

bad closed-loop performance 

For the system described by the transfer function 

1 G(s) = 
(l+s)(l+€s)= * 

let E > 0 be small, possibly representing fact actuator or sensor dynamics. If the fast 

dynamics are ignored (a common approach in practice) then the control design model 

becomes 
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where, for a= 1, it may be shown that the step input errors between G(s) and Gz(s) arc 

bounded by 

Iy(t) - YR(t) I =L'* < (3) 

Hence the modeling errors as measured by the open-loop response are arbitrarily small if 

E is arbitrarily small. Suppose an output feedback controller with u = -Ky. If 

1 
4 E *  

Ka- (4) 

then the model GR(s) is also useful for predicting closed loop behavior, since - - 
1 - = y(s). The interesting observation about (4) is that it tells that 

the usefulness of the control design model G&) for predicting closed loop behavior 

depends both upon the modeling error (characterized by E) and the controller gain K. 

This illustrates the theme of this entire paper, the modeling and control problem are not 

independent. 

Now suppose the requirements on modeling error and control design (4) are 

violated to the extent that 

1 K w -  
4E (5) 

1 
4E 

(The reader may verify that K= - corresponds to &e breakaway point on the mot 

locus). Now the model GR(s) and controller ( 5 )  predict a closed loop system with no 

overshoot, no oscillations and a small steady state error. However, the actual response 

will yield severely underdamped oscillations for a = 1, and instability for a = 2). 

The point of this example is that arbitrarily small modeling errors do not lead 

necessarily to small errors in the closed loop predictions. The following example 
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illustrates that small modeling emrs can lead to large errors in optimality and maximal 

accuracy predictions. 

Consider (1) with a = 2 and the same Gg(s) = l/s+l. Let K be the optimal control 

for the model GR(s) so as to minimize 

a 

V = [y&t) + pu*(t)]dt = V, + pV, 
0 

Then 

K = - l + W  

and the closed-loop system performance of (1) with u = -Ky is described in Fig. 2 in 

terms of V, versus Vu as p varies from 0 + 0. 

predlctlons from 

v u  
Fig. 2 Errors in optimal conmller (not to scale) 

E2 For p e - the actual closed loop system is unstable, whenas the predicted behavior 

based on GR(s) approaches its maximal accuracy, [V,, (predicted)] 0, as p + 0. 
4 
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Hence, in the neighborhood of muximl accuracy predictions for G&) in Fig. 2, the 

actual system delivers its worst performance. 

Now for the system (1). consider the "absurd design model 

1 Gi(s) = - 
(l+&S) 

in lieu of GR(s) = - * . This model is "absurd" to 
s+l 

(8) 

the extent that the open-loop step 

response error is not necessarily small. The optimal control for this realization of the 

plant (A = - -, B = -, C = 1) yields the optimal control u = -Ky, K =-1+ w, 
which is precisely the same K as for model GR(s) = -! Hence the actual performance 

is the same as that described in Fig. 2, and models GR(s) and Gi(s) are equivalent for the 

purposes of control design by (6). Then is an infinite number of controllers in this 

comparison (one for each selected value of p). Hence, this equivalence is not just for an 

isolated control based upon models Gi(s) and GR(s). 

1 1 
E & 

1 
s+l 

The performance predicted by model Gi(s) is shown in Fig. 2 to be arbitrarily far 

from the actual performance for large values of p & for small values of p, although the 

predictions are close to those of model GR(s) for small p. 

In Fig. 2, the comparison between the "actual" and "predictions from G(s)" indicate 

that for small gains (small Vu, large p) the actual performance a p s  with the 

performance which would be optimal using the exact model G(s). That is, model errors 

do no damage for small enough control efforts. The actual performance has a "best" 

performance at a particular value of control effort (p = E') and increasing control efforts 

beyond this point degrades performance leading eventually to instability (p < e2/4). All 

controllers will drive a physical system unstable as the control effort is increased enough 

(see the conjectun below). The shaded area in Fig. 2 describes the difference in 

performance between that which would be optimal for the exact plant G(s) and that 
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which results from controllers which an optimal with respect to an erroneous model 

{ G ~ ( s )  or G~;(s)  in OUT examp~e). This property is generic, according to the conjecture 

below. 

Let S, be a linear dynamic controller which is optimal for the linear model S2 Let 

the actual linear plant be So and its optimal controller be S,(which we cannot 

consnuct!). Since mathematical models are always approximations of the physical plant 

So f S2 Let V, denote the output nom when S, drives So. Let V,, denote the output 

norm when S, drives So. V, takes on its smallest value E, when the control norm has 

value yy. V, takes on its smallest value ,Vyo when Vu is arbitrarily large - VuoI see Fig. 2. 

Conjecture: 

Con?oller S ,  (optimal for model Sd driving plant So always yieldr an unstable 

closed-loop system in the neighborhood of maximal accuracy predictions using any Sz. 

Hence, 

lim V,(p) = - , 
P A  

indicating that the actual maximal accuracy E, 4 (min V,(actual)) occurs always at a 
tower value of control @err ,Vu than rhe predicted maximal accuracy ,Vyo= A 

{ min V,(predicted)) which occurs ar a value of - V,. 

This conjecture asserts that real controllers (always based upon erroneous models) 

will always be bad (unstable) for large control effort Vu and will always be as good as the 

optimal controller for arbitrarily small control effort (9b). For quadratic criteria, this 
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suggests that a meaningful comparison of candidate conmllers should be conducted in 

the neighborhood of the maximal accuracy V,, for each controller. Each controller 

design, (based perhaps upon different reduced order models), will yield a different Vyk 

Furthermore one cannot say a priori which is the best reduced order model (as the above 

examples illustrate). Hence, again we see the dependence between the modeling and 

control problems. 

MODELING PRINCIPLE 11: large open-loop modeling errors do not necessarily lead to 

large closed-loop prediction errors 

Most of the available theories on model reduction [l-141 try to achieve "small" 

modeling errors, according to some open-loop criterion for minimization. (Example 1 

may even provide some motivation for this goal). The appreciated vimie of balancing 

and Hankel norm methods [14] is the existence of an upper bound on the size of the 

transfer function error. The purpose of this example is to illustrate that it is not necessary 

to have small modeling -errors if the control scheme has the right characteristics 

(remember the theme of the paper). Consider a plant described by 

1 G(s) = - 
s+ 1 

and an approximate model 

The controller again is output feedback u = -Ky. Note that the actual system (10) is 

asymptotically stable, whereas the approximation (11) is not. GR(s) would not be 

deemed a good approximation of G(s) by any of the model reduction theories available in 

the literature. It is interesting, however, to ask "in what sense is GR(s) a good model for 

predicting closed-loop performance of the plant?" 
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(i) Stability of GR(s) under the feedback gain K will also yield stability of G(s) 

under this K. 

(ii) Errors in predicting performance of the step response are given by 

Hence the errors in the closed loop response predictions can be made as small as desired 

by choosing an appropriate K, despite the fact that open-loop emors are large. Thus, 

closed loop effects of the modeling errors may be smaller than the (open-loop) modeling 

errors. The conclusion from this example is that the modeling errors should be 

appropriate for the controller design and not necessarily small. (We do not suggest that 

high controller gains are always appropriate). 

To illustrate that large modeling errors can yield even zero closed loop errors, 

consider the following examples. We have already shown that two models of the same 

order, yet not related by a coordinate transformation, can yield the same controller (7). 

This concept is not limited to models of the same order. Consider models for standard 

LQG design: 

i = A x + B u + D w ,  z = C x ,  z = M x + v  

with zero mean uncornlatcd white noises w, v, with intensities W = 4, V = 1. The same 

controller given by 

& = A,x, + F, , u = Gx, 

A,=-3, F=2, G=-2, 

Optimizes all three of these models: 
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c2 = [a 4.0791, -1 1 
A2= [ -1 -1 ] * B2= [ i] 9 '2=[ ' M2 = [.8, .5] 

A3=-1, B3=.2, D3=1.5, C 3 = 6 ,  M3=.8 

with respect to the design objective V,  

V = E,(89+u2), E,k lim E . 

That is, the same closed loop vdue of the perfonnance metxic is obtained with aN three 

models (I-III). Hence models (I-III) are equivalent models wirh respect the connol 

objective V. The striking observation here is that the open loop responses of the "control 

equivalent" models &lV> are not similar nor "close" by any open loop measure, yet all 

h e  models are equally good for the control design. Fig. 3 shows an open loop impulse 

response of the models. Two of these models weft taken from [2q. Other control 

equivalent models are discussed in [27,28]. 

Let a given system So be controlled by a controller S,(S based upon a model S 

Modeling Principles I and II and the above numerical examples lead immediately to the 

conclusion that making errors "small" is extremely difficult and also unnecessary. 
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l l  

0 2 4 b 
t 

Fig. 3 Impulse response of three "control equivalent" models 

Modeling Principle III is a natural consequence of these two facts. 

MODELING PRINCIPLE IIk open-loop modeling errors (and hence their b o d )  do 

not generally constitute enough information for succes.$ul control design. 

Of course, the previous discussions and examples provide the clue to the missing 

information. Knowledge of inputs are required for any assessment of fidelity of the 

model. This principle is not limited to quadratic criteria for system evaluation. See for 

example from the Nyquist plot of Fig. 4 that many different models of a plant may yield 

controllers with a common gain and phase margin. Hence, models may be "control 

equivalent'' by any control design criterion, classical or modem. Such equivalence seems 

to have no direct relationship to the open loop modeling errors. 

I 
I 
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CONTROLLER 1 

WITH CONTROL 

Fig. 4 Three controllers yielding the same gain & phase margins. 

3.0 The Structure of ModeIing Errors 

For the sake-of &iscussion only, imagine a mathematical model so accurate as to 

mimic the physical phenomena for all practical purposes. Then in the following 

arguments we refer (by a slight abuse of language in this Section only) to the model 

i =Ax + B u + w  +f(x,u, t )  (13a) 

2 = M x + v  +g(x,u, t) (13b) 
... 

as the "physical system" with the control inputs u &R"*, disturbance inputs w ER"' and 

measurements z eR"'. The terms f(x, u, t), and g(x, u t) represent nonlinearities and 

w(t )  represents any time varying disturbances (w(t) is not a function of x or u). Of 

course, to attribute "physical system" status to (13) the dimension of the state x 

approaches infinity. We shall consider it large but finite. Now with respect to any 

mathematical model of the form 
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i = A x + B u + w ,  XER*' (14a) 

which might be used to represent the actual system (13). we wish to completely 

characterize the model errors of (14) with respect to (13). For this purpose rewrite (13) 

in the partitioned form 

or simply, 

where 
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We now have the following conclusion from (19). 

MODELING PRINCIPLE N: For every model of the form (14) there exists "model error 

vectors" e, and e ,  which represent "corrections" to the state equation (14a) and 

measurement equation (14b), respectively, such that z evolving from (14) matches the 

measurements z from the physical system (1 3)  if e, is added to (14a) and e, is added to 

(14b). Furthennore, the model error vectors can always be decomposed into the sum of 

four kina3 of errors: parameter errors epl errors in model order e,, neglected 

disturbances ed and nonlirtearities q. 

Note that all four types of modeling errors 5, e,, ed, and e, are always present with 

any mathematical characterization of a physical plant. We wish also to declare at the 

outset that there exists no control theories which can promise satisfactory control in the 

simultaneous presence of all four categories of modeling error. Techniques are available 

which have made pro,oress only in the accommodation of a subset of these four types of 

modeling errors. 

Certain other conclusions are also obvious from (16). The partitioning of the state 

vector (15) was necessary to define "parameter errors" with respect to a specified model 

of lower order. The matrices A R, BR, and MR result from a partitioning of (13) after (13) 

is written in a selected coordinate frame. It should be clear from (16) that since the 

parameters A R ,  B R ,  and MR depend upon the initial coordinates in (13), the phrase 

"parameter errors" in dynamic systems has no precise meaning. Indeed, the definitions 

(16) are as precise as one can be, yet these definitions are arbitrary to within a coordinate 

aansformation on (15). Note that if one chooses a canonical structure for (A, B, M) in 

(16). such as phase variable or Hessenberg form, etc. the parameters of (AR$R,MR) 
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may not have the same structure. Hence, (AA,AB,AM) docs not generally have a 

canonical structure. This suggests that one should not expect parameter adaptive control 

schemes to converge if a presumed canonical structure of the parameters has been 

presumed. Also, note from (19) that a change in coordinates which changes the ep term 

will also change the other terms eo and e,. Hence, the individual terms ep, eo, ed and e, in 

the model error decomposition (19) arc not unique. 

It docs not serve our purpose to characterize the model error vector explicitly in 

terms of higher order model states X F  For the reduced model (18) the vector functions 

e, and e, can be considered functions only of X R  and u and t. Eq. (18) shows that eo is a 

function of xT, but XT is in turn a function of XR, u, and t, as the solution of the second 

equation in (15) reveals 

where is the state transition matrix for AT. Hence, for (18) we may consider ex to 

depend only on (XR, u, t), and when we need to do so we shall write ex(XR,U,t). In fact, 

using (20) the model order e m r  eo of (19) may be characterized by 

.. 

eou eon 

From (19) and (4) conclude that e may be written 
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With respect to the reduced model (14) the first bracketed term in (22) denotes erors 

which depend on the state XR (epx is a linear function of XR, while eox is an integral 

operator on xR). the second bracket denotes emrs  which depend on the control u t p  is a 

linear function of xR, while eou is an integral operator on u, the third bracket in (22) 

denotes errors which depend only on time, and finally the last bracket in (22) denotes the 

errors due to nonlinearities. 

It is important to note that the model error vector ex in (18) depends upon the 

integral of the input u. Hence, one cannot assess the impact of modeling errors e, 

without knowledge of the nature of the controls. Even small inputs u can have an 

arbitrarily large effect in ex(t). To see this let A T  be a positive scalar and u(t) = e = 

constant. Then e,,(t) = (A R$3-&AT)(eA’t-l) gets arbitrarily large in this example. 

Hence, the homogeneous part of the system may be modeled arbitrarily closely 

(e, arbitrarily small or zero) and yet the model may not be acceptable for conrrol design 

(Modeling Principle I).  

The Model Error System 

The model error s t~c ture  (21) can be further detailed. See that e,, satisfies the 

differential equations 

and the definition 

allows (23) to be written 
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Similarly for eou in (21) 

The deleted state XT, and hence AT, is usually quite large so that the range of i is a large 

finite number. 

Equations (26), (27) and (22) are now combined with (17) to give the exact 

structure of the model error system 

A A where Elo = [I 01, Eol = [O 4, 
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- 
B+AB 
0 

0 

0 

Qo 

Qi 

Q2 

0 -  
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u +  

and 

using the definitions of e,,, ed, e,, e,, in (19), (21). 

In state form (28) becomes 

A+AA 

p* 

Pl 
0 
p2 

0 

0 

M+AM 

I: 
I 
I 
I 
I 
I 
I 

t 

El0 El00 0 00 0 0 
0 0 1 0 0 0 0 0  -.- 
0 0 0  I 0 0  0 0 * . -  

0 0 0  0 IO 0 0 * * -  

0 0 0  0 0 1  0 0 * - .  

0 0 0  0 00 I O  .'. 
0 0 0  0 00 0 I '.. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 
E,1 E,10 0 00  0 0 0 

19 



I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
1 
1 

I 
I 
I 
I 
I 
I 

20 

Note that the matrices which are unknown arc Pi, Q,, AA, AB. Knowledge of the model 

error structure (31) might be very useful in analysis (predictions of performance) and 

control design. Most adaptive approaches to control ignore the eix, ei, i = 0,1, * terms 

in the model error system (31). It might be useful to research the inclusion of one exna 

term. 

The transfer functions of (28) are developed as follows. In the context of linear 

systems, we shall ignore eN. Take the Laplace transform of (28) and set that 

.. .. 
Z( S) = (M+A.M+Eol ( ZPjP'))  [ (sI-A)-AA-E10( P~/s&')]-' [@+AB+ 

i=O i d  

To simplify this expression define 

AM wheni=O 
EolPbl when i > 0 

p , e { A A  wheni=O 
El#bl when i > 0 

when i = 0 ,  
QixP (" EloQ-l when i > 0 Qi, 4 EoiQ-1 

then 

where e,(t) represents the effects of only rime -dependent terms, 
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Let the inverse of the sum of two matrices be written 

This can be verified by writing [@-'+YJx = y as O-lx = (y-Yx) or 

x = O(y-Yx) 
= Oy - @Y@(y-Yx) 
= etc. 

Now let 

Then 

= [G(s)+AG(s)lu(s) + e,(s) (34) 

expressed in terms of the (known) transfer function G(s) = M<D(s)B, where 
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Both expressions (31) and (35) simplify greatly by special choices of coordinates 

of (15). Without loss of generality one can take AM = 0 and MT = 0 if dim z S dim xR. 

To see this, note that a similarity transformation on the state x = Tq can always take the 

measurement z=Mx to z = MTq=[IO]q if rank M =dimzSdimx.  Of course, we 

cannot construct this T (since we don't know M), but we know that it exists. Therefore 

by assuming that the states of our model are not fewer than the number of measurements, 

we can, from (29,32) without loss of generality set 

I 
I 
I 
I 
I 
I- 
I 
I 
I 
I 

Hence, from (32), Q, = 0, and P, = 0 for all i. This simplifies (35) to 

The state equations (31) also simplify in an obvious way when AM = 0. The term 

e, in (33) and (36) represents unknown time varying excitations arising from a 

combination of both external disturbances and mors of model order. When AG(s) is 

assumed zero, some attention has been paid in the l i teram 1161 to the determination of 

upper bounds on e ,  which can be tolerated before losing stability. In these studies, the 

AG(s) tern in (34) and (36) has been ignored in the control design. See that u(s) 

multiplies AG(s). Hence, it should be emphasized that the effects of model error e, in 

(18) cannot be assessed independently of the control law ut), and this is the fundamental 

pitfall that prevents the modeling problems and the conml problems from being 

separable. 

It is also common to analyze the effects of AG(s), but ignore the effects of e,(s) in 

(34),(36) 117-181. However, these terns both coexist in the presence of mors in model 

order. Imagine the physical process z(s) = [G(s)+AG(s)]u(s) + e @  and a model G(s) 
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which might be used for design of the controller H(s). See Fig. Sa. Control theory has 

reached a sophisticated level of maturity assuming that the model G(s)+AG(s) is 

specified a priori, or, if not given, then the assumption is that the model is something 

that exists in an absolute sense irrespective of the control policy (which is yet to be 

developed). The thesis of this paper is that the model and the control policy must be 

developed together and that no meaning (in an absolute sense) can be attached to either 

one in isolation. These concepts do not readily lend themselves to established definitions 

of robustness, or to certain identification concepts. 

In the time domain characterization of the model errors, the parameters Pi, Q in 

(29)-(31) are key. In the frtquency domain characterization of model errors, the 

spectrum AGQo) and e,(jo) in (36) are key. Which is easier to approximate or 

parameterize in practice? We cannot say. T methods rely on a characterization of 

AGQo), e,(jo), [17, 18,20,21,25]. This is never possible exactly, but neither is an exact 

determination of Pi, Q in (31). One available method does not need either the frequency 

or time domain characterization of modeling error, but only needs a geometric condition 

about the space of the model error vector e, in (18). If e, lies in the column space of B, 

(a "matching condition") then only an upperbound on e, is needed and not its spectral 

content [22]. The matching conditions are easily violated in problems with emors of 

model order. Yedavalli [23] shows bounds on each element of the A matrix 

perturbations which preserve stability. 

We cannot associate gain and phase margins with tolerance of any one of the four 

categories of mde l  error in (19), although errors in model order (XT ;c 0) will certainly 

modify the phase of the system. It can be said (without any sort of precision), that larger 

phase margins may allow the design to be less sensitive to errors in model order. Gain 

margins on the other hand do not necessarily provide tolerance to either parameter error 

or model order error. Refer to Fig. 5 and AG(s) to see that the Nyquist test for stability is 

satisfied if over all frequencies 0, the full length of the vector l+HG(jo) is larger than 
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Fig. 56 
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,the length of the vector HAGCjo), since the -1 point cannot be encircled in this case. 

Hence, a sufficient condition for stability is 

l+HG(jo) > HAG(jo) for all o 

or 

1 > [ l+HG(jo)]"~G@)] , for all o (47a) 

This condition may be extended to the maaix case as follows, [ll, 14, 15, 181, 

1 > max h { [I+HGCjo)]"HAG(jo)) . (47b) 
Q) 

where h(*)  denotes the square root of the largest eigenvalue of matrix (*)'(*). Note, 

however, that this can be an extremely conservative condition, since it is possible for the 

vector HAG(@) to be much longer than l+HGCjo) withogt causing an encirclement. See 

Fig. 5b for a stable situation which violates (47). However, a mort fundamtfital 

limitation of these results is due to the fact that Fig. 5a does nor describe most physical 

situations if the eL(s) term in (35), (36) has been ignored. The si,@icant term e, is 

composed of the same source of errors which make up AG(s), (See that J(s) is a model 

order error term which appears in both eqns. of (35). Hence, the above stability results 

are exuemely conservative and they ignore e Xs). Therefore they do not readily extend to 

include performance guarantees. Stability is the most studied subject in control, but 

stability is usually not sufficient for successful operation. 

CRITICISM OF THE "MODELING PROBLEM* 

The traditional idea of the "modeling problem" is as follows: 
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CRITICISM OF THE "CONTROL PROBLEM" 

The traditional idea of the "control problem" is as follows: 

The Modeling Problem: 

Find a set (or a class) of diferential equations SI describing the i iymical  

relationships between the response z(t) and the (unspecified) inputs {controls u(t), 

disturbances w(t)? and initial conditions}. 

The flaw in this task statement is the presumption that there exists a set of 

differential equations which relate z(t) and u(t), irrespective of u(t). We argue that any 

set of differential equations S is only an approximation of the physical phenomenon So, 

and it was shown in (28) that the enors associated with this approximation cannot be 

assessed, qualitatively or quantitatively, independently of u(t). In other words, 

knowledge of the conrrol inputs u(t) are required in any assessment of model fidelity. In 

modeling and identification literature it is common to talk about model errors with 

respect to a rrurh model, S .  There is no truth model (Sl f So). The model and its 

controller should be discussed as a pair. They have no significance separately. 

The Control Problem: 

Given the set of models C which describe the dynamical process, find an 

appropriate conrrol u(t) or controller u(z(t), t) to meet a specified set of conrrol 

o bjecrives. 

The flaw in this task statement is the presumption that the class of models which 

appropriately describe the process exists independently of knowledge of u(t), or 

consequently, of knowledge of the controller generating u(t). Now the control law cannot 

logically be specified prior to model development. Thus, if one wishes to squeeze the 

best possible performance from the controller design, then one cannot ignore the 
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MODELING PRINCIPLE V: 

The modeling and control problem are not separable and are necessarily 

iterative. 

This means that for any given G(s) + AG(s), in Fig. 5 the development of a G(s) 

and H(s) is an iterative process. 

Several implications of the modeling and conrrol inseparabiliry princble are: 

The phrase "model of the plant" is a misnomer. We must refer to a model as being 

appropriate under the influence of a particular controller. Hence, we must refer to 

a (model, controller) pair as appropriate or inappropriate for each other, with 

respect to a given plant. 

Only "local" properties can be stated concerning the model and the controller. 

This means that the interpretation of both classical and modem control theory must 

be tempered with this knowledge, since parameters of neither plant model nor 

controller can be taken to infinity (or wide ranges). Three examples follow. 

The Root Locus theory presumes a fixed plant while the controller gain goes to 

infinity. But the fidelity of the plant model depends upon the control gain. Hence, 

the same model of the plant is not appropriate at both the viciniry of the open loop 

poles and the open loop zeros, and a given root locus plot is never reliable in the 

vicinity of both the open loop poles and the open loop zeros. 

The Nyquist plots are reliable only over a limited frequency range and certainly 

not reliable in the vicinity of the origin, where 61 4 -. If this region of uncertainty 

extends to a unit radius around the origin, then even the stability results of the 

Nyquist plot arc suspect. See Fig. 6. 

In LQG theory it is presumed that the model is fixed and that the weights in the 

performance index may be varied over wide ranges. This generates the theoretical 
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predictions of maximal accuracy in Fig. 7 (solid curve). However, the actual 

perfomance follows the dotted curve, due to modeling errors (note the decreasing 

effect of modeling errors as the control effort decreases). Thus, the deviation of 

the actual performance from the theoretical is greatest where maximal accuracy 

predictions are made. Hence there is often a large discrepancy between achieved 

and predicted maximal accuracy, and large errors in the value of the control effort 

at which maximal accuracy occurs. These inequalities always hold, from (9c, 9d). 

The class of all stabilizing controllers for a given plant model is described in 

[25] and its references. The advantage of this knowledge is that the total design 

freedom is chamtenzed for accomplishing performance beyond stability. 

However, the given model might not accurately describe the plant over "all 

stabilizing controllers (for the given model)," due to MODELING PWCIPLE V. 

Hence, the "robust controller" based upon the given model might actually 

destabilize the actual system due to the fact that when the observer based controller 

is far away from its nominal design (for the given model), the model that 

accurately portrays the plant is not close to the given plant model. Much more 

work is required to capture the class of observer based controllers which allow 

appropriate changes in the model as a function of the controller. 

A "three-model" control theory would serve to keep control designs honest: 

Model 1: an Evaluation Model used to simulate the real system (until prototype 

testing is available); Model 2: a high order model for anlyrical predictions of 

controlled performance; and Model 3: a low order model for control design. 

"Honesty" is maintained by maintaining distinction between the three 

models. Model 2 can never be equal to model 1 due to Modeling Principle IV. 

Model 3 must change as a function of controller design due to Modeling Principle 
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V. Dangerous (faulty) prections occur whenever any two of these models are 

coincident, for in such cases control design mathematics can easily use high gain 

controllers to achieve a high level of performance without paying the (inevitable) 

penalty for modeling errors, see conjecture (9). See the "Controller data base" So, 

SI, Sz, in Fig 6a. 

4.0 The Structure of Errors in The Closed-Loop System 

Suppose our hypothetical "physical system" (1) is now driven by the linear 

dynamical controller with transfer matrix H(s) 

u(s) = H(s)z (s) (37) 

Without loss of generality we may associate a state space realization with (37) and write 

H( s) = G( sI-AJ'F (38) 

or in state form 

~ , = A S ~ + F Z ,  X , E R %  

u=Gx, , u & R a  (39) 

In this Section we ask how the poles of the closed loop system behave as either G or F 

approaches zero. Next arbitrary gains G and F are considered but with a restrictive 

assumption about parameter errors (ep = 0). It will prove convenient to write results in 

terms of a set of nonzero auxiliary matrices (A, B, M) which can always be found 

satisfying 

A + BG - FM 4 A, 

for any given A,, G, F. 



I 

30 

- 1  
v 

I 
.. 

t - -  I 

Fig. 6a Controller Data Base 

Iml model unreliable here 

Re 

N y Q U i S t  Plot 
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The system (13) is now driven by controller (21). Subtract (39) from (17). This 

gives a differential equaaon for Z = X R - X ~ .  Now writing (13), (39) in terns of the 

states x and x’ yields the homogeneous part of the closed loop system 

A 

A where Elo [II1, 01 and Eol = EO, I]. 

In the limit as G + 0, the eigenvalues of (41) become those of the block diagonal 

mamces A and A - FM. This conclusion is summarized as follows. 

Theorem 1: In  the limit CIS G + 0, any linear sysrem (13) driven by any conroller of the 

form (38), has the eigenvalues of A and (A - FM). 
Theorem 1 suggests that the low gain controller (characterized by small G) is 

stable if the open-loop system is stable and if the matrix (A - FM) (which is entirely 

under the design of the analyst) is stable. 

Now multiply (39) by ETo, then subtract this equation from (13). This defines the 

vector I 9 - x-E&xc. The homogeneous part of the closed loop system (13), (39) can now 

be described in terms of states x’ and x,, yielding 
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In the limit F-0 the eigenvalues of (42) become those of the block diagonal 

matrices A and A + BG. This conclusion is summarized as follows. 

Theorem 2: In the limit as F + 0, any linear s)stem (1 3) driven by any linear controller 

of the form (39) has the eigenvalues of A and (A + BG). 

Again, the reader is reminded that A + BG is under the design of the analyst. 

For funher insight into the effects of modeling e m r s  suppose that the gains G and 

F are not small, but the parameter emors are zero (AA = 0, AB = 0, AM = 0). Then the 

following is true. 

Theorem 3: I n  the absence of parameter errors (AA = 0, AB = 0, AM = 0), the closed- 

loop system eigenvalues are those of (A-FM), AT, and (A+BG), if XT is either 

uncontrollable or unmeasurable. 

Proof: Letring (AA = 0, AB = 0, AM = 0) in (42) yields 

The block diagram of the homogeneous part of the closed-loop system using the notation 

of (15) and (39) is given in Fig. 8. Using the definitions of Elo and Eol, (43) is further 

expanded as follows. 
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We shall first let xT in (15) be uncontrollable. This is equivalent to the statement that 

(ATR = 0, BT = 0) in (15) and in Fig. 8. (Recall the controllable canonical form). This 

makes the upper right mamx of (44) zero (using the dotted line partitions). In this event 

the eigenvalues of (34) become those of (A+BG) and those of the upper left block matrix, 

(using again the doned line partitions). But since ATR = 0 this upper left matrix is now 

also block diagonal, md therefore has the eigenvalues of (AR-FMR) and A T  In the 

absence of parameter error A R = A, M R  = M and the first part of the theorem is proved. 

For the second part of the proof let XT in (15) be unmeasurable (unobservable from 

the measurement 2 ) .  This is equivalent to the statement that (ART = 0, MT = 0) in (15) 

and in Fig. 8. (Recall the observable canonical fonn). This makes the upper right matrix 

of (44) zero using the solid line partitions. In this event the eigenvalues of (44) become 

those of (AR-FMR), and those of the lower right partition, again using the solid line 

partitions. But since M T  = 0 this lower right mamx is now also block diagonal, and 

therefore has the eigenvalues of A T  and (A+BG). Now in the absence of parameter 

errors A 

(A+BG)) as in the first part of the proof. Hence, the theorem is proved. 

= AR, M R  = M. This gives the same set of eigenvalues (of (A-FM), AT, and 

# 

A clear discussion of the concepts in Theorem 3 first appeared in [29] using modal 

coordinates and the phrases "observation spillover" and "control spillover", (signals "a" 

and "b" in Fig. 8 respectively). WhiIe such phrases are descriptive, they disguise the fact 

that the "controllability" and "observability" of the states they XT are the important 
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concepts. Hence, we prefer the standard "controllability, observability" description of 

the phenomenon to the phrase "spillover". 

Theorems 1 - 3 suggest that it is important that the matrices ((A-FM), (A+BG), 

A T )  be asymptotically stable, and more significantly, that this conclusion remain 

independent of the methods by which the controller parameters (Ac, F, G) wen derived! 

(Notice that the optimal LQG controller stabilizes (A-FM), (A+BG)). Suppose the 

connoller (39) was designed based upon the assumed model (A R, MR, B R) so that this 

model had certain desired behavior in the closed loop. Fig. 8 makes it clear that, in the 

absence of parameter enors, the fundamental cause of deviation in system behavior from 

predicted behavior is the relative degree of controllability and observabiliry of the states 

xT. While controllability and observability prove to be of great benefit for control in the 

ubsence of model errors, complete controllability and observabihy would be a serious 

handicap in the real world. Control designers are indeed fortunate that most of the 

"deleted states" associatcd with "real world XT" are uncontrollable and unobservable. 

Otherwise there would be even fewer successful control designs to celebrate in practice. 

Modeling Principle VI: (Unconuollability and Unobservability of Dynamic Systems) 

Using any number of sensors and actuators, the physical plant will not be 

completely observable nor controllable. 

This proposition requires some explanation since observability and controllability 

are mathematical properties associated with a mathematical model, whereas the "physical 

plant" defies exact description by any mathematical model. Suppose one improves a . 

given mathematical representation of the physical plant by adding additional dynamics 

which were originally ignored in the model. As one continues this process, adding more 

and more details so that the new model more accurately models the physical plant, the 

mathematical model eventually becomes both unconuollable and unobservable. In other 

words, an unconuollable, unobservable model can always be constructed to provide a 
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closer representation of the physical plant than any controllable, observable model. It 

takes little convincing to see that this argument is correct. Taken to an extreme it is 

perhaps obvious that the molecular motions in an aircraft wing or the seat cushion 

vibrations in the aircraft cannot be controlled by aileron actions nor observed by rate 

gyros. However, one need not resort to such extreme examples, using infinitesimal 

effects. Note that the example in Fig. 9 describes an uncontrollable system, and the 

uncontrollable part is a nontrivial part of the system dynamics. The conuol is the torque 

applied to the reaction wheel. 

Recall that if (A,B) is controllable [or (A,C) is observable] then A is 

asymptotically stable if and only if there exists a positive definite solution to 

O=XA*+AX+BB* [or to O=KA+A*K+C*C]. The important impact of the lack of 

observability or conuollability is that the stability proofs which rely on observability or 

controllability cannot be used to assure that the physical plant will be stable. Indeed, 

stability is a mathematical concept relating to a mathematical model, and hence the 

physicai plant can never be proved stable by mathematics. (Due to the fact that the 

physical plant defies exact mathematical description, and the amount of modeling 

precision required to predict stability is not known a priori). We can only say that the 

model is stable subject to a given range of parameter values, or a given magnitude of the 

model error vector e,, etc. 

Modeling Principle VI seems to be at odds with the notion of generic 

controllability, observability [24]. This result E241 states correctly that adding arbitrarily 

small numbers to every element of (A,B,C) will make'the matrix triple controllable and 

observable. Hence, the notion of generic controllability, observability suggests that 

physical systems (such as Fig. 9) arc arbitrarily "close" to observability controllability. 

This is consistent with the view of at least half a dozen conuol texts which state 

emphatically that all real world plants are controllable and observable. But the addition 

of arbitrarily small numbers in every element of (A, B, C) is a mathematical exercise that 
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has no basis in the physics of the problem and cannot describe physical behavior. For the 

physical system in Fig. 9, a control which can simultaneously regulate both e(t) and w(t) 

to arbiuaq values would contradict the conservation of angular momentum. Hence, we 

can safely claim that this system is arbitrarily "far" away from controllability rather than 

arbitrarily "close" as the notion of generic controllability suggests. Rather, we should 

interpret the generic controllability result as good reason not to believe computer 

calcuZations of controllability, observability, since roundoff errors are the equivalent of 

adding small emrs to every element of (A, B, C), as in the thesis of generic 

controllability, observability. A common reaction of those that insist that physical 

systems are state controllable is "Who would design an uncontrollable system?" 

Actually, it is impossible to do otherwise. The physical system will always be 

uncontrollable (and that is good news not bad news), but we should not discard the 

uncontrollable part in the control design process. This is verified as follows. 

It can be shown that the stable, uncontrollable, observable system 

minimizes 

V = "(yTQy + uTRu)dt 

with the control law 

u = G , x ~  + GZX~ 

where G, is the standard state feedback gain for optimizing the plant (A,,, B,, C,) and 
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,G2 satisfying 0 = KA22 + [All + B1G1lTK + KllA12, G2 = -R -1 B T K depends upon (A22, 

A,,, B,, G,) and is not zero unless x2 is unobservable in y. Hence, the often heard 

argument "the uncontrollable part of the system should be deleted since we cannot 

control it" is faulty logic. The optimal controller (or any other reasonable controller) will 

alter its control of x1 (the controllable part) with the knowledge of the dynamical 

interactions between x1 and x2, even though x2 itself cannot be controlled. For example, 

the minimal energy optimal control that pushes x1 toward a certain desired value 51, 

might be zero if the dynamics between x1 and x2 are such that x1 is naturally (without 

control action) driven toward Kl. If x2 were deleted a priori the optimal control would be 

greater than zero, hence not optimal for the complete system. 

To illustrate the relationship between controllability observability and stability 

consider the second order system in modal coordinates. 

Note that mode XT is observable (controllable) if and only if MT f (BT f 0). Now 

consider any first order controller 

u(s) = H(s)z(s) 

I 
I 
I 
I 
I 

where 

H(s) = G(sI-A,)-'F . 

and where we have chosen to describe A, in the form 

where G is chosen so that 
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and F is chosen so that 

The necessary and sufficient closed loop stability requires the product of controllability 

and obsexvability of XT to be limited by 

This simple third order example provides important insight into the necessary and 

sufficient condition for stability. The closed loop will be stable if the neglected part is 

unobservable (MT=O) or uncontrollable (BT=O), as promised by the sufficient 

condition, Theorem 3. But (46) also shows the upper bound on I MTBT I which will 

allow stability even if M,, B T  are not zero. Hence, the right hand si& of (46) is a 

measure of the conservatism in Theorem 3, and this measure is a function of both the 

modeling errors (AT) and the control gains (G, F). 

Control Design Considerations: (Trading Stability and Performance) 

Practical control designs always require some iteration or some fine tuning during 

experimentation with the real hardware. Then arc two fundamentally different strategies 

for these two phases of design. These strategies differ by the manner in which they 

handle stability and performance concerns. 

The Stability Design Scenario: 

Design phase A: Design for stability 

Design phase B: Tune for performance. 
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The Performance Design Scenario: 

Design Phase A: Design for performance 

Design Phase B: Tune for stability 

"Stability Design" includes (i) guaranteeing specified gain and phase margins by 

root locus, Bode, Nyquist, (ii) designing by pole or pole region assignment, (iii) 

designing by Liapunov techniques, (iv) designing by H- techniques, etc. "Performance 

Design" includes satisfying input or output variance (or b) bounds, perhaps by optimal 

control. 

Phase B is intended to be a simple gain change. In the "Stability Design" scenario 

the gain is usually tuned up a bit to improve performance without destroying stability. In 

the "Performance Design" scenario t5e gain is usually turned down a bit to iniprove 

stability margins while maintaining acceptable performance. 

Of course, the design tools have been oversimplified in these scenarios, in order to 

draw distinctions among points of view. There are circumstances where each scenario is 

preferred. In some situations in the Stability Design scenario, adequate performance may 

be impossible to achieve by a simplt gain change in Phase 8. In this case the 

Performance Design scenario is prefernd. In some situations with the Performance 

Design scenario, adequate stability margins may be impossible to achieve by a simple 

gain change in Phase B. In this case the Stability Design scenario is preferred. An 

overwhelming proportion of control literature has focused on srubiliry to support the 

Stability Design scenario. However, as society demands more petformance in modern 

systems, the development of practical and theoretical tools which focus more on 

performance will strengthen the Performance Design scenario. 

Stability and performance 2re competing partners in the design process. They 

usually do not naturally cooperate. Improving one usually (but not always) degrades the 

other, and good tradeoff methods are needed from the research community. In fact, then 

are many examples where stability, performance, and sensitivity arc rhtee competitors in 
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the design process, where design changes that improve one of the three necesarily 

degrades the other two. Modeling and control design theory has not yet provided a 

convenient and practical tradeoff among these three design goals. Part of the problem is 

lack of an agreement about what kind of sensitivity, stability, and performance measures 

to use. For example, in [33] we have the following conclusion . 

Theorem 

LRt hi, i=1,2,..,m, denote the distinct eigenvalues of A. Dejine a measure of root 

sensitivity by 

A n ahi 
i=l aA 

s = 11-11 , 11[*]112= tr [.]*[.I . 

The lowest bound on root sensitivity is S 2 n  and S = n  if and only if A is nonnal, 

(uT = A ~ A ) .  

a R +  a h h i  
II, I I  II types of sensitivity [N]. 

a A  

For a simple pitch control problem for an aircraft it was shown in [33] that minimal root 

sensitivity in the closed-loop system is achieved (that is, normality is achieved 

(A$Z=ATA,, A,-PA+BG) only at values of G which were destabilizing. 

Furthermore, as a design objective a "nearly normal" objective can'be added subject to 

pexformance or stability constraints. In this event the design can depart arbitrarily far 

from minimal rmt sensitivity (even though the design is "nearly" normal). This is due to 

the fact that the "abnormality" measure L 4 IIAcAT - AzAJI can be a convex function of 

the parameters in A, even when the sensitivity measure S is not. This means that "nearly 

normal" does not mean "nearly minimally sensitive". The "nearly normal" design 

objective has been widely used in both frequency and time domain designs. It has 

popular appeal due to the fact that symmetric matrices are normal, easy to work with, and 

have orthogonal eigenvectors. However, such examples in [33] point out that while 

a A  Similar results are available for 11 
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normal mamces (or orthogonal eigenvectors, or symmetric mamces) coorespond to 

global minimal mt sensitivity, a "nearly normal*' design goal is suspect since "nearly 

normal" does not coorespond to "nearly insensitive". 

Since root sensitivity is not easily incorporated in designs that minimize other 

types of performance, some authors seek to incorporate different kinds of response 

sensitivity. The max entropy approach of [30] minimizes an norm of the inputs and 

ourputs while modeling the uncertain parameters as zero mean white noise. This leads to 

two 

this 

one 

Riccati-like plus two Liapunov-like equations to solve by iteration. A case study of 

approach is presented in [32], by comparing it with a different optimal controller, 

that minimizes the norm of norm of nominal performance plus a weighted 
- - 
du 2 input and output sensitivity 11-11 , 11*112 where p is the vector of uncertn parameters 

(not random). These conclusions emerged from these case studies (comparing methods 

1301, [31], and [32]): 

aP aP 

Presently method [31] cannot treat uncertain parameters appearing in the 

measurement mamx, method [30] cannot treat parameters pi appearing both in B 

and C, while method [32] can do both. 

Presently method [30] cannot treat parameters pi appearing nonlinearly in (A, B, 

C), while methods [31] and [32] require only differentiability of (A@), B@), 

C(p)) with respect to p. 

When comparing performance of inputs, outputs with stability margins, the 

case studies favored the results of method [32] over methods [30] and [31] in 

most cases studied, but ranked the results of method [32] equivalent to the results 

of method [30] in two of the cases studied. 

Case studies should be encouraged in the areas of robustness and model error 

compensation since applicable theory is quite limited, and case studies can point the way 



I 
I 
I 
I 
I 
1:. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

4s 

VI) The physical plant is always unobservable and uncontrollable (fortunately). 

The impact of each of these principles is discussed to explon limitations of 

available theory. An understanding of these principles can aid in the search for 

successful control designs and for improved "robusmess" definitions. 
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A Sensitivity Controller For Uncertain Systems 

Kenji Okada and Robert E. Skelton 

Abstract 

In this paper a new controller design, which we shall call the "Trajectory 

Sensitivity Optimization" method is presented to improve the robustness for parameter 

variations. The method uses the sensitivity trajectory to model the parameter uncertainty 

and introduces a special quadratic cost function involving an input and output sensitivity 

term. 

Necessary conditions arc derived to obtain the dynamic controller. The necessary 

conditions consist of two Lyapunov equations and two controller gain equations which 

have no closed form solution. Therefore a special iterative algorithm was developed to 

obtain the numerical solution. 

The method can deal with a wider class of pyamcter uncertainty than existing 

methods. Numerical examples show that the method is effective in improving the 

robustness to parameter variations. 

1. Introduction 

The LQG theory is well cstablishcd as a multivariable control design synthesis, but 

it suffers from a poor sensitivity to certain clnsses of  plant pannxter iincenainty [ 11. 

This sensitivity problem for pwametcr uncertainty becomes extxniely important in 

flexible structiirc control when then is large paramcter uncertainty. To cope with thc 

problem various design syntheses hwe been proposed. 

We m motivated by the tr;rjecrory sensitivity approach of Ythviilli and Skelton 

[I31 where the necessary conditions a n  described to solve our problem. By rcstricting 

our attention to controllers of o d c r  n (equal to plant order) wc will be able to makc 

further progress tow;ird solutions. 
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The sensitivity controller proposed by Wagie and Skelton [2] uses a trajectory 

sensitivity model to include the effects of parameter uncertainty and a special cost 

function involving both an output and input sensitivity term. This paper shows how to 

reduce the sensitivity model to tractable order, while preserving the correlations between 

outputs and all their sensitivities. The main drawback of this sensitivity controller design 

I method is that the method does not deal with parameter uncertainty in the measurement 

matrix. 

The Maximum Entropy Method has been applied by Hyland and Bernstein to the 

flexible structure problems [3]. This method uses a stochastic modeling for the 

parameter uncertainty in order to improve the robustness for the parameter variation. 

The design synthesis provides a direct method to the design of robust, reduced order 

controllers in which robust controller design and controller order reduction arc performed 

simultaneously. The necessary conditions obtained by this method consist of two 

modified Riccati equations and two modified Lyapunov equations coupled by stochastic 

effects. Two rcsmctions of the method relate to the structure of the parameter 

uncertainties permitted. The uncertain panmeters must appear linearly in the plant, input 

and output mamces. It also rtquins that the control-and-measuremtnt-dcpencicnt 

uncertain panmeters arc uncorrclated. Because of this requirement the method cannot be 

applied directly to the prnbiems in which there exists parameter uncertainty that affects 

the control mamx and the mcasurcment matrix simultaneously. The method * 1 so  cannot 

deal with puanieter uncertainties in the disturbance mauix and in the output inmix. 

This m y  cause the unnecessary dcgrad;ition o f  the closed loop syatcm pcrformance. 

The approach developed by Tahk and Speyer [JI is called asymptotic LQG design 

synthesis. This method uses the internal feedback loop to model the parameter variations 

and serves to improve the stability robustness and reduce the sensitivity to parnmcter 

variation. This approach is a generalization of the LQGLTR technique introduced by 

Doyle and Stein [SI. The approach has difficulties whcn then  exist pannxtcr vnri:itions 
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in the input mamx B or in the measurement mamx M. In this case the method requires 

augmentation of the state space so that AB and AM arc embedded in the state matrix of 

the augmented system. This augmentation of the state space eventually leads to the 

increase of controller order. 

As explained so far, the existing robust controller design methods for parameter 

uncertainty have some restrictions on the structure of parameter uncertainty. Hence, the 

main purpose of this paper is to propose a new robust controller design synthesis which 

can deal with wider classes of parameter uncertainty. The proposed method uses 

trajectory sensitivity to model the parameter uncertainty and introduces the special cost 

function which includes the output and input sensitivity terms in addition to the nominal 

input and output cost. The controller parameters arc determined such that the given cost 

function is minimized. Through this minimization procedure, the controller obtains a 

robustness property with respect to parameter variation. The fundamental idea of this 

method is the same as the Wagie, Skelton Method, although the approach to obtaining 

the controller is different. 

This paper is organized as follows. Section 2 discusses the modeling of parameter 

uncertainty using a trajectory sensitivity model. Section 3 introduces the newly 

developed "Trajectory Sensitivity Optimization" method and provides the necessq 

conditions for the sensitivity reducing controller and the algorithm to obtain the solution. 

Section 4 deals with the numerical examples to dcmonsnnte the cffcctivcncss of the 

proposed method and provides performance comp;uisons with other design mcthtxis. 

Finally Section 5 contains conclusions. 

2. Modeling of Panmcter Uncertainty 

2.1 Ttxjectory Sensitivity M d e l  
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In this section we derive the trajectory sensitivity model for 8 simply supported 

beam example which will be used in the numerical example in section 4. 

Assume there an h uncertain parameters p1, p2, , Ph and a space-state model of 

the system is given by 

iC = A(p)x + B(p) u + D(p) w 

y = C(p) x 

z = M(p)x + v 

where x, y, z, u, w, and v are rtspectively, state vector of dimension n, output vector of 

dimension k, measunment vector of dimension I ,  input vector of dimension m, zero- 

mean white noise of dimension d with intensity W, and zero-mean white noise of 

dimension 1 with intensity V, and p is given by p = [PI, pz, *, phIT 

Then the rtsulting sensitivity system can be expressed as follows: 

d -x, = A,x, + B,u, + D, W, 
dt 

Ys = c, x, 

z,=M,x,+v, 

where: 

where the matrices A,, B,, C,, D,. and M, are evaluilted at p = E (nominal vector value of 



I 
I 
I 
I 
I 
I 
I. 
I 
I 
I 
I 
1 

p). The basic idea to improve the robustness for parameter variations is to use a cost 

function VD given by 

(2.7) 

when yTQy + uTRu is the part of the cost function for the standard LQG design, and 
h 
C(y:Qiy~ + GR,gi) arc added sensitivity terms. We seek a controller which minimizes 
i l  

the cost function V,. Then the sensitivity of the controller to the parameter uncertainty 

pi is reduced in increasing the norm of weighting matrices Qi and Rb 

The nominal LQG conuoller is obtained by setting Q,, R, to zero, and a controller 

which minimizes sensitivity only (neglecting nominal performance requirements) is 

obtained by setting Q, R to zero. 

2.2 Trajectory Sensitivity Matrices for An Example 

In order to construct the trajectory B,, 5. D,, and M, for 

beam shown in Fig the physical system, we deal with an 

1. This example, is used later for sensitivity rcducing controller design. In this example 

we take the following three quantities as the uncertain parameters. 

(1) p : Mass Density of  Ream (per length) 

(2) E1 : Flcxual Rigidity of Beam 

(3) K, : Actuator G i n  

It is well known that the natural frequency ai and mode shape \Y,(r) for i-th d e  

of a simply supported beam iue given by 
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(L: Length of Beam) 

If we assume a torquer at r = rcl a linear displacement measurement sensor at r = rm, and 

B linear displacement at r = r, for the output, then we obtain the following equations of 

motion: 

where: bi = Qi(rJ = --‘Yi(r) a I -, = ar 
If we choose the state variable x by x = [q T , q  *TT ] , then the above equations can be 

transformed into the following state-space expression. 

~ = A x + B u + D w ,  y = C x ,  z = M x + v  

where 

Using the above plant model, we obtain the following trajectory sensitivity rnatriccs Apil 

Bpi, Cpi, Dpi. and Mpi for the thrte uncertain physical parameters. 
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- 
* p2=1 E1 

'* = (EONOM 
Uncertain Parameter E1 : 

* &=  K, 
(KJNOM 

Uncertain Parameter K, : 

h = O  B,=B G=O D,=O % = O  

3. Trajectory Sensitivity Optimization Method 

In this section we introduce our controller design synthesis which reduces the 

sensitivity to pmmcter variations of the plant. using the trajectory sensitivity derived in 

section 2. The basic idea of this method is similar to that of the Wagie and Skelton 

method 121. but the advantages of the new method are: 1.) The order of the controller 

(the number of states) obtained by this method is smaller than that of the Wagic and 

Skelton method. 2.)The method can deal with a wider class of parameter uncertainty 

than the Wagie and Skelton method (7%~ Wagie and Skelton method cannot deal with 

the panmeter uncertainty related to me;lsutrment matrix. i.e., M, term) 
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The method has these advantages over the Maximum Entropy Method: It can deal 

with (a) parameter uncertainty in a nonlinear manner, (b) parameter uncenainty in the 

disturbance matrix D and the output matrix C, and (c) parameter uncertainty appeared 

both in control matrix B and measurement matrix M at the same time. The advantage of 

the Maximum Entropy Method is fewer equations to solve. Some discussion of the 

convergence of the method appears in [ 121. 

3.1 Problem S tatemcnt 

We consider the following problem 

For the system 

n-th order Plant: 

where, 

iC = A(p)x + B(p) u + D(p) w 

y = C(p) x 

z = M(p) x + v 

E(w(t)w(s)T) = W6(t*) E( v(t)v(t)T) = VS(t-r) 

E(w(t)) = O  E(v(t)J = O  

p = (p,* * , p,,) Uncertain Paramctcrs 

The n-th order Coneroller is: 

u = G x c  

i, f A'x, + B'u + F (Z - WXJ 

= ( A C + B c G - F M ~ x , + F t  

(3.4) 

(3.5) 
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AC=A@ BC=B@) MC=M@) 

: Nominal Value of p 

aF aG -=0 -=0 (i=l, ..., h) 
api api 

Find F and G such that the cost function VD is minimized. 

If we set pi = pai, where oi = I Api I is the magnitude of the expected variations in pi, 

then we need only to determine p, Q, and R as design parmeters. The weight p is 
usually determined through tradeoff between the robustness to panmeter variation 

and the nominal performances of input and output cost. the weights Q and R may be 

determined under nominal conditions (q = 0) to satisfy Ely; S 02, for a specified ai, 

i=l, 2, ..., ny while minimizing uTRu. The algorithm for such weights is given in 

chapter 8 of [ 101. 

3.2 Derivation of Necessary Conditions 

Let 

(3.7) 

then the equations for the closcci loop system 1vc given by 

i = (A-FM)n + ((A+BG-FM) - (AC + B'G-FM')) xC + DW - FV 

i , = F M I  + ( A C +  BCG + F(M - MC)) X, + FV 

(3.8) 

(3.9) 

y = c 2 + c x, (3.10) 

u = G x c  (3.1 1)  

The above equ:itions art transformed into the following matrix foniis: 
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I 
I. 
1 
I 
I 
I 
I 
I 
I 
1 
I 
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I 
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when : 

Let 

i, = A,x, + Daw, 
Y = C.X. 
u = G,x, 

A-FM (A+BG-FM)-(AC+BCGFMc) 

A~+B~G+F(M-M~) 3 

then the closed loop sensitivity system is expressed by 

i ,  = A,x, + Daw, 
Yl=clxl 

where 

10 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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(3.20) 

(3.21) 

(i=l, ..... h) 

D, = 

D -E 
O F  

Dpl 0 

Dph O 

0 0  . .  . .  . .  

0 0  

C, = 

c c 0 0  ... 0 0  
0 G 0 0  ... 0 0  

c p 1  cp1 c c ... 0 0 
0 0 O G  ... 0 0  . . .  . .  . . .  . .  . . . . . . . .  . . .  . .  . . .  . .  . . . . . . . .  

Cph cph 0 0 ... c c 
0 0 0 0  ... o c  

(3.23) ,( 3.24) 

From the triangular structure of A, in Eq.(3.20) note that the poles of the 

closed loop sensitivity system given by Fy.(3.18) we q u a l  to thosc of the closcd 

loop system without sensitivity states rcpeated (h+ l )  times. Thcrcfort if the closcd 

loop system is stable at p = F ,  then thc closcd ltmp sensitivity system given by Eq. 

(3.18) is always stable. 

The steady state covariance is defined by 



12 

I 
I 
I 
I 
1 
I 
I : 

. .  

then X, is obtained as the solution of the following Lyapunov equation: 

A,X, + X,A: + D,W,D: = o 

where : 

using the above X,, we can express the cost function VI, by 

VD = [ x , c ~ ~ c s ]  

where : Q,= block diag(Q, R, PlQ, P , R , .  . ., QhQ, QhR) 

(3.25) 

(3.27) 

(3.28) 

(3.29) 

By augmenting the constraints (3.26) to the objective functions (3.28) by use of 

Lagrange multipliers, we i n d u c e  H given by 

Then the solution to the problem satisfies the following conditions: 

(3.31) 

Relying on standard m m x  CPICUIUS, the following necessary conditions arc 

derived: 
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K, A, + ATK, + CTQ C, = o aH 
0 -=o: 

ax, 
-=o: aH A,x,+x,A,T+D,w,D,T=o 
3% 
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(3.32) 

(3.33) 

when KI, . . . , K,, and Xl , .  . . , Xm2 arc defined by 

(3.35) 

(3.36) 

(3.37) 

Xij and Kij the (iJ) block of X, and K,. 

X, = Xij : nxn (3.38) 

... Kij : nxn (3.39) 

As we can see in the definition of A,, A, contains F rind G. Therefore the equations 

Eq(3.32) - Eq(3.35)   KC coupled. However these equations can be solved 

numerically by using the iterative method presented later in this section. Bcforc 

proceeding to the iterative method, we investigate the Lyapunov eqiiations given by 

Eq43.32) and Eq.(3.33). 
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The size of the Lyapunov equations is 2n(l+h)x2n(l+h). Therefore if the 

number of uncertain parameters is big, the equations may be too large to solve 

directly. The structure of the equations, however, allows them to be solved in 

p h o n e d  forms. 

0 Partitioning of the Lyapunov equation for X, 

Let qj represent the 2nx2n matrix 

and Di, be the 2nx2n matrices given by 

DWDT+FVFT -FVFT 

Dl14[  - ~ F T  MT 1 (3.41) 

(3.42) 

(i2 1 j 2 2  and j r i ,  D,dD)  

then Zij is the 2nx2n block of X, in the ij position, and Dij is the 2nx2n block of 

D,W,Dp in the ij position. The partitioned matrices Tj (j 2 i 2 1) are obtained by 

solving the following equations: 

(1,l)blmk: A&,l+Z1,Az+D11=O 

(1  ,j)block: A & Z , j + Z l j A ~ + Z , l A ~ l + D l j = O  

(j = 2,. . ., h+l) 

(i ,j) block: A& + &,,A$ + (AklZlj + Z;A$,) + Dij 5: 0 

(3.43a) 

(3.43b) 
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Since the (1.1) block element given by Eq.(3.43a) is the standard Lyapunov 

equation, it may be solved directly for Zll.  Substitution of Zll obtained in 

Eq43.43a) into the (lJ) block elements reduces Eq.(3.43b) to standard Lyapunov 

equations. In a similar way the ( i j )  block (2 S i S j 5 h+l) elements can be solved by 

substituting ZIi and Zlj obtained in the previous calculations. 

Therefore the Lyapunov equation for X, of order 2n(l+h) can be reduced to 

the (h+l)(h+2)/2 Lyapunov equations of order 2n. It can also be shown easily that 

each partitioned Lyapunov equation obtained above can be partitioned further into 

four sub-block elements of order n which can be solved separately in the sequence of 

(1.1). (1,2), (2,l). (2.2) sub-block. Hence the total number of Lyapunov equations of 

order n becomes 2(h+l)(h+2). However, from the symmemc property of X, the 

diagonal block elements Zi (i=l. ..., h+l)  arc reduced to three sub-block elements of 

order n instead of four sub-block elements. Therefore the total number of Lyapunov 

equations to be solved is (h+1)(2h+3). 

0 Partitioning of the Lyapunov equation for K, 

Let Yij represent the 2nx2n m m i x  

and Cij be the 2nx2n matrices given by 

(3.44) 



T 

I 

I 
I 

(2 5 i s h+l) 
CTQi- C CTQk C+GTRkl G 1 CTQJ CTQ& G& 

(3.45) 

(3.46) 

(3.47) 

C , ~ O  ( 2 ~ i c j )  (3.48) 

where QR = &Q , Rk = &R , then Yij is the 2nx2n block of K, in the ij position, and 

Cij is the 2nx2n block of GTQ,C, in the ij position. The partitioned matrices Yij 

(j 2 i 2 1) are obtained by solving the following equations: 

(j,j)block: YiiAo+AzYi+Cii=O , ( l < j S h + l )  (3.49a) 

(i , j) block : (3.49 b) YijA, + ATYij + Ci, = 0 , (1 c i C j) 

(1  , j) block : YljAo + AZY l j  + A:,Yi + Clj = 0 , (2 < j) (3.49c) 

( 1 , 1 ) block : Y I ,Ao + AJY 1 + (Y I ~ A  I + Y 13Az + + Y 1 J,+, Ah) 

+(Y,ZAI +Y,,A,+.*.+Y,.,,A,)T+C,,=O . (3.49d) 

From Eq.(3.49) and Cij = 0 (2 5 i c j), we obtain 

Yij=O for 1 c icj  (3.50) 

Thcrcfon the structure of K, is given by 

I 
I 
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EG= 

yll y12 y13 * * *  ylh+ 
PIYO 0 ... 0 

&Yo - * *  : 
... 0 

S. Y. M. PhY( 

(3.5 1) 

where Yo is the solution for the following Lyapunov equations: 

Yp40 + bTYo + cq = 0 (3.52) 

cq=[CTQc cTQc ] 
C ~ Q C  C ~ Q C + G ~ R G  

(3.53) 

The number of Lyapunov equations to be solved becomes h+2 Lyapunov equations 

of order 2n or 4h+6 Lyapunov equations of order n. When we choose 

PI = pZ = = &, = 0, only the (1.1) block K, becomes non-zero. In this case it can 

be easily shown that the equations for G and F reduce to the standard LQG 

equations. 

3.3 Algorithm to obtain the Numerical Solution 

Since the equations obtained as the necessary conditions arr coupled, a special 

numerical algorithm is required. The approach taken is similar to that of the Wagie 

and Skclton method. The algorithm is summarized as followed: 

0 Algorithm to obtain F and G 

STEP 1 Choose initinl F and G 

(c.g. use the solution for the standard LQG problem) 



I 
I 
I 
I 
I 
I 

STEP 2 For the given F and G, solve X, and K, from Eq(3.32) and Eq.(3.33) using 

the partitioned Lyapunov equations. 

STEP 3 Using X, and K, obtained in STEP 2, Calculate F and G. Set Fmw = F 

GmW = G 

when a is the coefficient which dictates the convergence of the solution. Usually 

0.2 - 0.5 is used as the value of a. But when the weight pi to the sensitivity part of 

the cost is large, a smaller value may be necessary. 

4. Numerical Example and PerformanceCompruison with other Controller Design Methods 

In order to investigate the effectiveness of the proposed controller design 

synthesis and compare the pcrformances with other methods, we take the following 

three exmplcs. 

4.1 Simply Supported D c m  

We have alnscly derived the sensitivity trajectory m d c l  for a simply 

supported beam in S ~ O R  2. He= we consider the sme example. As numcricd 

valuer we use the following values: 

2 
rn Beam Parameter: L = IC p = L E1 = p 



Sensor, Actuator, Output Position : r,,, = 0.30 L r, = 0 ro = 0.45 L 

0 Noises : V = 1 W = 1 

Then ai, Yi(r), Oi(r) arc given by 

K x y = i2 Yi(r) = sin (i-r) ai(r) = i cos (i-r) L L 

If we choose the fint 4 modes as our design and evaluation model, then we obtain 

2 2 2 2  R=diag(l  , 2 , 3  , 4 )  B,=[1234]' 

C,. = [sin(0.45 x) sin(2x0.45 K) sin(3x0.45~) sin(4x0.45 K)] 

M, = [sin(0.30x) sin(2x0.30~) sin(3x0.30~) sin(4x0.30X)j 

Substituting these matrices into A, B, C, D, M and h, B,, GI, D,,, M,, we obtain 

the required data for the Trajectory Sensitivity Optimization (TSO) method design 

synthesis. 

If we choose Q = 1, R = 1 for the weights of the cost function and apply the 

standard LQG method, then we obtain the controller whose stability range for 

pmmeter variation and input & output cost arc summarized in Table 1. As we can 

see From Table 1, the standard LQG controller is sensitive to the parameter variation 

p and EI. 

We apply the TSO to the same system to reduce the sensitivity. First we 

investigate one uncertain parameter case in which only one uncenain panmeter is 

considered for the design of sensitivity rcdiicing controller. Next we deal with two 

uncertain parameter case in which two uncertain parameters are considemi at the 

same time for the contmller design. 
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O Sensivity Reducing Controllers for One Uncertain Panmeter Case 

Controller Type A 

In this case the sensitivity part with respect to mass density variation is 

weighted for the TSO cost. Table 2 shows the stability range for parameter 

variation and input & output cost of Type A controllers for different weights 

p. When we compare Table 1 and Table 2, we see that the stability rmge for 

p variation increases as the weight j3 increases. In this case the sensitivity to 

E1 variation is also reduced. 

The gain margin, however, decreases as the weight p increases. Fig 2 

shows output cost perfomance change due to p variation for different 

controllers. As we see in Fig. 2 and Table 2, the output cost increase rate is 

maintained relatively small while the input cost increases pretty rapidly as j3 

increases. Therefore tradeoff between the robustness to parameter variation 

and the input & output cost should be made to determine the appropriate 

weight p. 

0 Sensivity Reducing Controllers for Two Uncenain Panmeter Cased 

Controller Type B 

In this case two sensitivity tcms (i.e. sensitivity tcrms with rcspect to p 

and KJ ;ire weighted at the same time for the TSO cost. Table 3 shows the 

perfomlance o f  Type B controllcrs Comparing the rcsults with thc standard 

LQG controller performance. we noticc that controller B-2 can nchicve hctter 

robustness for parameter variations p, E1 and K, also. 

4.2 Cut with an  Inverted Pendiihm 

Next we consider the c u t  with an inverted pendulum shown in Fig 3. The 

linearized equations expressed in state-v;triables fonn given by 
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or 

iC = Ax + B(u+w) 

y = z = [  1 o o o ] x = c x  

z;n : z , , , = { ~ } + ( : ~ = [ ~  1 0 0 0  4 X + V = M X + V  

W e  consider the following two uncertain parameters: 

a) Actuator Gain (KJ : 

We obtain the following sensitivity data. 
.* 
n. Trajectory Sensitivity Data : p = 

(KahOM 

% = O  B , = B  C p = O  D,=O M,=O 

Maximum Entropy Design Data : 

A,=O B , = O  M , = O  

b) Angle Scnsor Gain (ICs) : 

We obtain the following sensitivity data. 

Trajectory Sensitivity Data : p = K, 
(WNOM 

Maximum Entropy Design Data : 
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Numerical Values: M = I kg m = 0. I kg L = 1.0 m g = 9.8m/sec2 

W=1.0x1Oa V = l . 0 x l O d [ ~  y] R = l  Q - 1  

0 Sensitivity Reducing Controllers for K, Variation 

Three different sensitivity reducing controller design synthesis, 1) TSO 

2) Wagie and Skelton method 3) Maximum Entropy method, were applied to 

this problem to compare the performmce. The perfonnance CUNCS (input & 

output cost versus stability range of K, variation) for different controller 

designs arc shown in Fig 4. As we can see in the figure, the Wagie and 

Skelton method cannot improve the robustness for K, variation even if a large 

p is chosen. The TSO achieves smaller input & output cost than the 

Maximum Entropy method for the same stability margin. Therefore the TSO 

is best for this problem in terms of performance cost and robustness to 

parameter variation. 

Sensitivity Reducing Conao l l ers  for  K, Variation 
~~ 

The Wagie ;ind Skelton method cannot deal with the problem in which 

measurcment sensitivity matrix M, is non-zem. Therefore the TSO and the 

Maxirnurn Entropy rnethds were applied to this problem. The results are 

shown in Fig 5. In this case the TSO achieves smaller output cost th;rn rhc 

Meximum Entmpy nicthod for the same stability margin, whercas it rrquires 

larger input cost than the Maximum Entmpy method. Fig 5 suggcsts that in 

this case therc is no big difference between two methods with respect to 

performance cost and strrbility margin for K, variation. 
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4.3 Doyle's Example 

The problem considered here was first given by Doyle [l] and investigated 

further by Bemstein in his Maximum Entropy method [7]. The required data for the 

problem arc given by Plant Matrices : 

A=[: :] .=[E] C=[1 11 D = [  :] M=[10] 

Uncertain parameter : b in matrix B (b)NOM = 1 

Like the previous example, three different controller design syntheses were applied 

to this problem. The performance curves for different controller designs arc shown 

in Fig 6. In this case the controllers obtained by the Wagie and Skelton method 

show worse robustness for parameter variation b than the standard LQG controller. 

Therefore the method is unacceptable for this problem. The TSO and the Maximum 

Entropy method (For the Maximum Entropy method, we used the results presented 

in [7]) show the similar results to those obtained in the previous example (Uncertain 

Panmeter : K, Fig 5 ) .  

5. Conclusions 

In this pnpcr a new controller design synthesis is presented to iniprove 

robustness to parameter unccrtainty. The proposed mcthtxi uses the triijcctoty 

sensitivity to model the parameter uncertainty and i n d u c e s  a special cost function 

to reduce the parameter sensitivity at both the input and output to the plant. The 

order of the controller is eqrial to that of the nominal plilnt. The necessary 

conditions for the optimization consist of two Lyapunov equations and two gain 

matrix equations. An iterative algorithm was cicveloped to obtain the solution to 

these coupled equ;rtions. The large siter of the Lyapunov cqu;itions of  order t n (h+ l )  
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is reduced to several smaller equations, using partitioned forms improving numerical 

efficiency. 

The new method can deal with a wider class of parameter uncertainty than 

either the Wagie and Skelton method or the Maximum Entropy method. The new 

method can deal with parameters appearing nonlinearly in any place; the plant 

matrix, the input matrix, the disturbance matrix, the output matrix, and the 

measurement matrix. 

Numerical examples show that the method is effective in improving 

robustness to parameter variations. For examples with a simple parameter structure 

other methods can be applied (Maximum Entropy and Wngie, Skelton). In some of 

these examples the new method performed as well as these existing methods. In 

other examples the new method performed better. The disadvantage of the method 

is the lack of a closed form solution. Iterative algorithms arc required whose 

convergence nmains an open question for future research. 
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Stability Range of p 
P = P/(P)NOM 

Stability Range of E1 
P = EI//(EI)NoM 

Input & output  Cost 
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Pmu 1.173 
Pmin 0.677 
P,, 3.226 
prnin 0.863 
v, 2.760 

I 
I 
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Sensitivity Reducing 
Controller for p 

T v ~ e  A 

I 
I 
I 
I 
I 
I 

Performances 
Type A-1 Type A-2 Type A-3 
D = 0.01 D=O.l D = 0.5 

Table 1 Performances of the Standard LQG Controller 

a ,  

Gain Margin K", 
Stability Range p Pmax 

Standard LQG Controller Performances 
Gain Margin 4.087 

3.247 2.300 1.706 
1.415 1.687 1.802 

P = P/(P)NOM 
Stability Range of E1 
P = EI/EI )N~M 

I r v,, I 0.488 

~~~ 

pmin 0.68 1 0.596 0.435 
PmU 2.774 2.704 2.734 
PA- 0.733 0.63 1 0.607 

Table 2 Performances of Controllers Typc A 

~ .,..,I.. 

Input & Output Cost 
...... , 
V, 2.856 3.147 3.821 
v u  1.300 3 . 7 0  1 1.243 

Sensitivity Reducing I Controllers for p and K, 

- .  I 

Pc rf'orm;inces 
Type A-2 Type B-1 Type B-2 

Gain Margin I Kmax 
pz = 0 P 2 =  1 & = 1 0  
2.3X) I 3.054 I 4.843 

Table 3 Performances of Conmllcrs Type B 

Stability Range p 
P = P/(P)NOM 

Stability Range of l i t  

PIN, 1.687 1.567 1.360 
"inin 0.596 0.66 1 0.687 
P,,,,, 2.703 1.618 I .526 

I Type B I p, =0.1 p, = O . l  p, =O.l I 

Input & o u t p u t  Cost v, 3.147 2.9 13 2.723 
V" 3.709 3.692 3.865 

I 
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Figure 1 Simply Supported Beam 
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Figure 2 Output Cost Performance Change due to 
p Variation for Different Controllers 
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Figure 4 Performance Comparison of Different Controller 
Designs (Uncertain Parameter: Ka) 
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Figure 5 Performance Comparison of Different Controller 
Designs (Uncertain Parameter: K,) 
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Optimal q-Markov Cover for 
Finite Precision Implementation 

Darrell Williamson* and Robert E. Skelton** 

Abstract 
The existing q-Markov COVER realization theory does not take into account 

the problems of arithmetic errors due to both the quantization of states and 
coefficients of the reduced order model. All q-Markov COVERS allow some 
freedom in the choice of parameters. In this paper we exploit this freedom in the 
existing theory to optimize the models with respect to these finite wordlength 
effects. 
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Introduction 
An asymptotically stable system can be characterized in terms of its impulse 

response sequence (Markov parameters) and its output covariance sequence 
(covariance parameters) due to a zero mean white noise input process. A general 
approach has been developed [3] for realizing a system which matches q Markov 
parameters and q covariance parameters. Such a system is referred to as a q- 
Markov COVER, and q-Markov COVERS may be generated from output data 

are not independent and consequently the q-Markov COVER is not unique. In 
particular, all q-Markov COVERS are not related by state space similarity 
transformations [4]. In this paper we shall exploit the remaining degrees of free- 
dom to optimize the q-Markov COVER realization with respect to an aspect of its 
finite wordlength realization. 

Specifically, when digital controllers arc to be implemented, both the con- 
troller coefficients and the controller states must be represented in finite 
wordlength precision. This finite wordlength (FWL) representation (or quantiza- 
tion) causes inaccuracies in the response when compand to the ideal (Le. infinite 
precision) behaviour. Effects of quantization on the controller arc increased noise 
at the output due to internal state quantization, and errors in time and frequency 
response characteristics due to coefficient e m .  

In digital filter design, the FWL effects are known to be most significant 
when the poles of the filter arc very close to the unit circle [12]. In particular, 
narrow band filters have all these poles near z =  lfjo. For digital control, the 
zero-order-hold equivalent of a continuous time model (or controller) with a pole 
at X will have a discrete pole at exp (3.T). Hence for fast sampling and/or low 
damping of the continuous models, the discrete model wil l  behave like a narrow 
band filter. The synthesis of optimal digital controllers with respect to 
arithemetic quantization noise is an important considemion in design especially 
for continuous time systems operating under a fast sampling rate [9,10]. The 
effects of quantization depend highly on the structure of the controller. This 
paper seeks to reduce these errors in the synthesis of q-Markov COVERS. 

[3,4] or h m  higher order models [5,q. The Markov and covariance parameters . .  

1. Discrete q-Markov COVER 
Consider the asymptotically stable nominal discrete system 
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(1.4b) 

x(k+l) = Ax&) + Bu(k) ; x(k)&R-, u(k)eR"' 
(1.1) 

where (u(k)) is a zero mean process with unit intensity E (u(k)u'(j)) = ISij and 
E (x(k)u*(j)) = 0 for k 2 j. The Markov parameters Mi and covariance parameters 
R j  of (1.1) are defined by 

(1.2) 

yor) = ww ; Y & W  

M, 4 CA'B ; R~ = CAjXc', j 2 0, ~j = CXA*~C*, j s 0 

when the state covariance matrix X satisfies the Lyapunov Equation 

X= AXA' + BB' . (1.3) 
These parameters M, and Rj appear as coefficients in the expansion of the transfer 
function H(z) and power spectral density H(z)H'(f'); that is 

a n 

- 
Mo 0 ... 0 
M1 M, ... 0 

MQ-2 ' 0  

*I Mq-2 e.. Mo 

. . . . .  . . .  . . .  M, = 

0 0 ... 0 0 
0 ... 0 0 

Mi . . . . .  
.... 

M p 2  -3 ... M, 0 

The first data matrix D, in (1.4a) is Hermitian 
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positive semidefinite. Hence we can obtain a (nonunique) full rank factorization 

D , = P$g'; Pq&RVmq, (1.5a) 

where 

(1.5b) b rq= rank (D,) =&P,) I; nyq 

If we partition P, according to 

P,' = p,' F,']; Eq&RWq, F , E R ( * ~ ~ ~  (1.6) 

then it follows that the second data matrix 5, can be factored as 
- -+ E, = PqPq; F,&RW*q (1.7) 

Fi = pl G,']; Gq&RVq 

where 

(1.8) 

for some G, (to be determined). The following result has been established. 

Theorem 1.1 [3] 
Given the q Markov parameters (M,; i = 0,1, ..., q-1) and the q covariance 

parameters (&; i = 0,1, ..., q-1 ) and a matrix G in (1.8) such that (1.7) is 
satisfied, then the realization (%, B,, C,} of order r, defined by - 

A,=P,'P,; B,=P;W* - - a  <I]*; Cq=Eq (1.9) 

where P; denotes the Moore-Penrose inverse of P is a q-Markov COVER. The 
corresponding controllability grammian is given by 

X,=I (1.10) 

Furthermore 

P, = [C,' A$,' - * (ASp-')*C,']* (1.11) 

This theorem describes a large but not complete class C, of q-Markov COVERS 
parameterized by (G,) such that for some ESPq the data matrices D ,, 5, satisfy 
(1.5)-(1.8). Each matrix G, will (generally) result in a q-Markov COVER having 
a different transfer function. In order to compute the set of all such G,, observe 
in (1.5)-(1.8) that 



- 5 -  

. .  

. _.- - _  . .  

Then 

(1.12a) 

(1.12b) 

&E R-7 

implies - 
E$,' = & ~,p; = D-~, F,G,' = 4, G,G,' = 4, (1.13) 

Now expand D, in terms of its singular value decomposition 

(1.14) 

(1.15) 

so that E,= C, is dehed by the first n,, rows and F, by the last (q-r)n,, rows of 

Pnkrank P,). (1.16a) 

Dehe 

Then from (1.15) 

Pq s min (rqr (q-my) (1.16b) 

Next, expand F, in (1.13) in terms of its singular value decomposition. If strict 

inequality occurs in (1.16b) we have 

The Moore-Penrose inverse F: of F, is then given by ' 

F: = V, UG (1.18) 

Corollary 1.1 
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(1.19) 

(ii) G,Z E R %% such that G,zG; = &q&q 
where 

sq 4 rank [q, - qq1 q] 

(E) Gq3 4 Vi E R@q**q. 

(1.20) 

and 

(1.21) 
Then if strict inequality occurs in (1.16b) the set of all G, which satisfy (1.13) are 
defined by 

Gq = Gql + GQUqGaf (1.22a) 

u Q E R'*(~~*+J ; s, s r, - p, s n,, (1.22b) 

is an arbitrary row unitary matrix (i.e. U,U;=I). Furthmore, if the MOOR- 
Penrose Pl of 

where 

P,= @$ F,']' (1.23) 
is expressed as 

(1.24) 

then the corresponding state space representation (A,, B,, C,] of the q-Markov 
COVER is given by 

r x( 1 
P l =  dll L12] ; cl1 E R e &, Llze Rr* 

%=L11+L12Gq; L11=L11Fq~RrGq 

B,=P,+CMo.M; M&*; C,=E,. ( 1.25) 

If r, = p,, then G, = Gql is unique. 

Proof: The expression for F,G,' in (1.13) implies G,' is of the form 
G * = F  +G'M'; M,=RVh*q) 
9 l 4  s3 

for some M. Then expanding G,G; using (1.13) we have 
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Also h m  (1.13) and (1.21) 

(1.26) 

so that 

Since MM* has rank sq, 

2. Optimal Finite Wordlength *Markov COVER 
A fixed point finite wordlength realization of the ideal (i.e. infinite precision) 

q-Markov COVER (1.1) shall be referred to as a q-FWL Markov COVER and is 
described by 

jz(k+l) = AQ[%(k)] + BQ&) 

Ql%Jdl= W) - e@) 
The components of the matrices A, 6, e are assumed to have a W, bit fractional 
representation obtained by quantization of the components of A, B, C in (1.1). 
The components of R(k) have a W+W, bit fractional part while components of 
Q[R(k)] and Q(k) all have a W bit fractional part. The components of the state 
residue vector e(k) has a W+W, bit fractional rtpresentation in which the most 
significant W bits are zero. The LHS and RHS of (2.1) are therefon consistent 
With respect to their fractional wordlength representation. The number of bits 
required to represent the integer parts of A, 3 and e depend on the dynamic range 
of the coefficients. State space structures in which all coefficients are less than 
unity are therefore advantageous in this regard. The required integer representa- 
tion of Q[jz(k)] will depend on the dynamic range of the input signal Q(k). Inade- 
quate dynamic range will result in arithmetic overflow. .The accuracy in the com- 
putation of R(k) is determined by its fractional wordlength W. 

Define the state error vector %(k) and output m r  vector %(k) by 

%(k) = &(k) - m; 4(k) = 3(k) - y(k) (2.2) 
Then from (l.l), (2.1) and (2.2) 



- 8 -  

.:. 

Au(k) = W) -u@) 
There arc five t e rn  which contribute to the output error (i) internal arithmetic 
mrs e&) due to state quantization (ii) coefficient errors due to errors AA in A 
(iii) AB in B (iv) AC in C, and (v) input quantization errors Au(k). Under weak 
'sufficiently exciting' conditions on the input (u(k)) it can be shown [q that if 
Q[.] in (2.1) denotes 'roundoff quantization, then (e@)) is a zero mean uniform 
white process with covariance 

(2.4) 1 2-2w E (e(k)e+&)) =Y% ?= 12 
Similarly (Au(k)) is assumed to be a zero mean white uniform process with 

E (AU(IC)A'U(IC)) =+I (2.5) 
We assume that the quantized coefficients A, 6, arc obtained by rounding A, B, 
C to Wo bit k t ions .  Consequently, all components Ap of the mor matrices AA, 
AB, AC satisfy 

For simplicity we normalize the error matrices and define 6A, 6B, 6C by 

so that all components 6p of 6A, 6B and 6C satisfy 

lSpl c 1 .  (2.8) 
The steady state output emor covariance Y of (E,(k)) is then given by 

Y = CPC' + fCC' + y:(6C)(k+fI)(6C)* - yof[C(6C)' + (6C)C*] , (2.9) 
where 

p = E (&X(k)<(k)) 
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= APA' + ?AA* + Y~(~A)@+&GA)' + T, (~B) (~B) '  + ~ B B '  

.and 

2 = E (2@)2*@)} = M(A)* + + (1-$)66* 
For the remainder of this section we assume no coefficient errors (i.e. yo=O in 
(2.9)) and consider only the effects due tojnite state wordlength (FSWL). The 
issue of coefficient error shall be resumed in Section 5. 

Theorem 2.1 
Define the output noise measure 

JPtr[Y1. 

Then for yo = 0 

where 

J=?{tr[Kl +trp'KB]} 

K=A'KA+C'C. 

Proof: From(2.9) 

Y = CRY; F = AFA' + = P + ?I 
where 

Z= I + BB'; 

Now 

and 

K =  2 (Ak)'C'CAk 

so that 

I 
I 
I 

(2.10) 

(2.11) 
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A fixed point q-FSWL Markov COVER corresponding to the (ideal) q- 
, Markov COVER (1.1) is therefore described by 

fi(k+l) = AQ[iz(k)] + BaR) 

(2.12) 

The output mise gain (qx) due to state quantization and the output mise gain 
(q,,) due to input quantization arc defined by 

1\, 4 ma q u  =b 0 ' = 1  (2.13) 

The noise gain qx generally varies with state space rcpresentation whereas q, is 
independent of the coordinate basis. Specifically, consider the q-FSWL Markov 
COVER 

2(k+l) = A  Q[Z(k)] + B a(k) 

YO = C Q[?(k)l (2.14a) 

QCZ(k)l= zo-for) 
whm 

A =T'AT, B =T'B,  C =CI' (2.14b) 

and Q[Z(k)] has a W bit fractional representation. Assuming 'sufficient excita- 
tion' by C(k), the state residue sequence (f(k)) in (2.14a) due to roundoff quanti- 
zation will again IX a zero mean white uniform process with covariance 91 as in 
(2.5). The corresponding output quantization noise gains q, and iu due respec- 
tively to state and input quantization are given by 

q, = trlrcJ; 4, = tr[B 'w 1 (2.15) 

whm B is given by (2.14b) and 

& = A W ' + C * C .  (2.16) 

But from (2.1 l), K, = T'ICT, so that 

qz = trF'KTJ; 4, = trp'KB] (2.17) 

Notice from (2.13) that the noise gain q,, due to input quantization errors is uqf -  
fected by a similarity transformation. Conversely the noise gain qx due to state 
quantization generally changes with co-ordinate bases. There is no change if T is 
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unitary. The q-FSWL Markov COVER (2.14) is superior to the q-FSWL Markov 
, COVER (2.12) if 

%<% (2.18) 

However the comparison in (2.18) must be made under the assumption of identi- 
cal scaling of the states l(k) and Z(k). Specifically, equal 12-scaling of gain a 
from a zero mean unit intensity white noise input O(k) to the state components 

Xi = a for all j (2.19) 

where Xi denotes the jth diagonal component of the state covariance matrix X 
given by (1.3). Equal 12-scaling of gain a of components of 2(k) in (2.14) 

2j&) of I*) requires 

requires 

zi=a; Z=AZA*+BB* (2.20) 

Equality in 12-scaling of representations (2.12) and (2.14) is equivalent to equality 
in the state dynamic range (i.e. number of bits in the integcr representation of 
states) for a given probability of overflow. We now state a result which is impor- 
tant for establishing 12-scaling. 

Lemma 2.1 [8,9] Suppose M = M* > 0 is an nxn matrix. Then a necessary and 
sufficient condition for the existence of a unitary matrix V such that 

is 

We have shown in Lemma 1.1 that different similarity transformations of an 
ideal q-Markov COVER corresponds to different factorization of the first data 
matrix D in (1.5a). Our aim is to optimize this factorization. 

Definition 2.1 

noise gain q due to state quantization errors; that is 
The Optimal q-FSWL Markov COVER minimizes the output quantization 
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subject to th 12-SCalin constraint: 

h = a  forallj 

where the observability grammian $ satisfies 

= %*$Aq + C,'Cq 

with (4, B ,  Cq) defined by (1.22)-(1.25). 

(2.2 1) 

(2.22) 

(2.23) 

.-: :: 

In corollary 1.1 we have shown that all the degrees of freedom available to 
select Gq are confined to an arbitrary row unitary matrix UT We now show how 
to optimize us. 

Theorem 2.1 

a. The optimal q-FSWL Markov COVER (1.21a), (1.24) is defied by 

(2.24) 

where Uqe Rv(rq*p) is an arbitrary row unitary matrix and $ satisfies 
(2.23). 

4 5 2  qop= r;' Inin (mq I) 
u, 

... 

b. The transfer function of the optimal q-FSWL Markov COVER has Hankel 
singular values given by the eigenvalues of $ defined by the minimizing 

us. 
c. Suppose Us = Us. is the minimizing solution corresponding to the optimal 

Gq=Gqo in (1.21). Let (Aqo,Bqo,Cqo) be the corresponding state space 
realization in (1.24). Then the optimal q-FSWL Markov COVER has a 
(nonunique) state space representation (Ti'As.T,. Ti'B,, Cq0Q where 

To = UozoV: (2.25) 

such that 

(i) the unitary matrix Uo is defined by 

u&JJo = z 2  

where 

(2.26a) 
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qo = w: + C&Cqo ; z2 = diag( o&, &, ..., Gr.0) 2 (2.26b) 

' in which (ai} an the optimal Hankel singular values (eigenvalues of q0). 
(W 

and (iii) V, is unitary such that 

(2.27) 

(2.29) 

Proof: By corollary 1.1 we have for Gq defined by (1.22) for any row unitary 
matrix Uq (of appropriately sgecified dimensions) that Gq defines a q-Markov 
COVER The cmsponding realization ( Aq,Bq,Cq) for each such Uq has identity 
controllability grammian and observability grammian $ defined by (2.23). Now 
given a particular Us, apply a similarity transformation 

T = Uoq,V,' 

to the given q-Markov COVER Then 

tr(T'I($T) = ~(.,"$U0> 

(T*T)-l= V,.,"V,' 
and 

By lemma 2.1, the 12-scaling constant can be satisfied for some V, provided 
tr(xi2) = ncx. Following Williamson [ 1, Theorem 4.11 (with a minor modification 
of the 12-scaling constraint), the optimal performance is given by 

where (at) are the eigenvalues of q. That is, 
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The optimul q-FSWL Markov COVER therefore achieves the minimum in (2.24). 
The structure of U,, no, V, in (2.25)-(2.29) follow directly from Wilhnson [l] 
(see proof of Theorem 4.1 with U = I). 

3. Computation of the Optimal FSWL Markov COVER 

obtained using the method of Lagrange multipliers. Specitically, let 
Necessary conditions for the optimal solution in Theorem 2.1 can be 

(3.la) J = (ttfK3)2 + MA(-$+A,'K$h + C,'Cq)] + @(I-UqUi)] 

where 

A = A ' ~ R ' ~ ~ ;  Q = Q ' ~ R ~ + *  (3.lb) 

arc symmetric Lagrange multipliers. After taking derivatives of J using (1.22) 
and (1.25) 

aJ - = I - uqu; an 
-- aJ - 21 + 
a%% + 2Ag'AAqe 

By setting these derivatives to zero we obtain the following result. 

(3.2) 

Lemma 3.1 Necessary conditions for the derivation of the optimal q-FSWL Mar- 
kov COVER are given by 

$ = A,'$% + Cg'Cq 
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where 

These necessary conditions cannot be solved explicitly for the optimal row 
unitary matrix Us and so an iterative proccdm is required. One possible algo- 
rithm is now described 

(5) Update UqQ) by solving the nonlinear algebra problem: 

n(j>uq(j+l> - Pq(j)Uqo'+lQ(i) = %o'); nu) = Q'Q) (3.5e) 

Us(j+l)U,'(j+l) = I 

The most difficult step at each stage of the algorithm is to solve (3.5e) for a row 
unitary Uq(j+l) and symmetric nu). There is generally no explicit solution 




